
Exploiting Spatial Redundancy with Adaptive
Pyramidal Rendering

Orion Sky Lawlor

U. Alaska Fairbanks
2380 Steese Hwy

99712, Fairbanks, Alaska

lawlor@alaska.edu

Jon D. Genetti

U. Alaska Fairbanks
513 Ambler Lane

99775, Fairbanks, Alaska

jdgenetti@alaska.edu

ABSTRACT
Just as image data compression is designed to save space while preserving the essence of an image, we present

an adaptive pyramidal rendering scheme designed to save rendering time while maintaining acceptable image

quality. Our coarse-to-fine scheme predicts when and where it is safe to take less than one sample per output

pixel, and exploits spatial redundancy to predict pixel colors in the resulting gaps, both of which can be

performed at framerate in realtime on a modern GPU. As a lossy compression method, we present experimental

data on the rendering time versus image quality tradeoff for several example renderers.

Keywords
GPU Raytracer, Data Compression, Time Compression, Sampling Theory

1. INTRODUCTION

Several current commercial trends are converging to

require higher speed rendering in computer graphics.

The transition to battery-powered mobile devices

with modest onboard graphics processing ability,

such as phones and tablets, means rendering

efficiency is increasingly important. Graphics display

pixel densities are also increasing, with 1080p mobile

displays,
1
 and laptop displays exceeding 5

megapixels.
2
 Stereoscopic 3D output devices such as

stereo headgear are becoming affordable, but require

high resolution imagery to be generated at minimum

latency, such as 1080p at 120Hz. Finally, there are

well known rendering techniques such as path tracing

illumination that are more general and higher quality

than the current state of the art, but are only

beginning to be affordable in real time [Otte13].

Modern lossy image data compression techniques

such as JPEG can compress a still image by 50-fold,

to less than one bit per color pixel, yet still

reconstruct a high quality image nearly

indistinguishable from the original. The reason this

is possible is that most images have a high degree of

redundancy, such as similar nearby pixel colors.

Video compression schemes such as MPEG can

produce even higher compression ratios by taking

advantage of temporal redundancy, such as

similarities between adjacent video frames.

This paper presents a general scheme called

“rendering time compression” which aims to speed

1
 For example, the Samsung Galaxy S4 has a 5 inch

display at 1920x1080 resolution.
2
 For example, the Apple MacBook Pro has a 15 inch

Retina display at 2880x1800 resolution.

up rendering time, by exploiting redundancy in the

rendered output pixels. The rendering time saved

could be spent on higher resolution output, more

detailed geometry, or more sophisticated rendering

techniques such as global illumination; or used to

deliver higher quality content on lower end devices

such as cell phones. When a cloud-based renderer’s

mobile output device is only accessible via a slow

network link, extensive data compression is already

required, so rendering time compression could

increase overall efficiency and make new graphics

applications affordable.

Prior Work

Spatial coherence in rendering is well known and has

long been exploited. The seminal raytracing work

[Whitt80] used a spatial subdivision approach to

perform per-pixel antialiasing, and Mitchell [Mitc87]

adaptively placed randomized samples for

antialiasing, but neither demonstrated interpolation of

finished pixels. An incremental raycasting volume

renderer [Levo90] cast a sparse grid of rays across

the dense grid of pixels, starting at a sampling rate of

one ray for every four pixels, then adaptively refined

regions where colors differed by more than a fixed

epsilon value, but did not demonstrate more than one

level of refinement.

Compressive Rendering [Sen11] is a wavelet

technique that can reconstruct a high-quality image

from a sparse of image samples. This has delivered

good results for real scenes, but the sparse linear

algebra required for image reconstruction takes

several minutes per frame, making the technique too

slow for interactive rendering.

Temporal coherence has been exploited previously,

such as an image caching raytracer [Deme98],

although in the pre-GPU era antialiasing was

expensive, so aliasing limited the number of times a

frame could be reused. Other ray tracers exploit both

temporal and spatial coherence, such as radiance

interpolants [Bala99] which can provide guaranteed

radiance error bounds while making a per-pixel

choice between interpolation and ray tracing. One

difficulty with temporal coherence schemes is

handling non-static geometry, such as character

animation or simulated physics.

2. COMPRESSION THEORY

Mathematically, we can treat the true rendered image

I as a function,

The domain of the image function is the pixel

coordinates (x,y), where and

for an image with pixels. The image also

depends on the camera model, lighting, and scene

geometry and shaders, but we will elide those here.

The range of the image function is an n dimensional

output “color” space, most commonly n=3 for

conventional RGB color, but often n=4 to include an

alpha channel or for CMYK print output, and in

general n could be quite large for a sophisticated

renderer that includes polarimetry and multispectral

sampling, which we will nevertheless refer to as

“color” here.

Our goal in any rendering process is to

computationally reconstruct the image function’s

shape throughout its domain, creating a rendering

R(x,y) with the same domain and range as the true

image, and ideally with the same colors. Hence we

seek to minimize the reconstructed image error E,

as scaled by a perceptual bias function B.

A simple perceptual bias function B might depend

only on the p-norm difference between the true and

rendered colors; for our experimental work we use

, the L1-norm color difference or sum of

absolute color channel differences. A common

choice is mean-squared-error (MSE),

for n pixels, although this ignores small differences.

A more sophisticated function might also weight

differences in image gradients, such as

 (for scalar weights and), or

amplify differences in perceptually salient areas, such

as the “structural similarity” metric. Mitchell

[Mitc87] weighted differences in green more heavily,

to match the human eye’s color-dependent contrast

sensitivity.

Sampling: Measure the Image

Our primary tool to construct a time-compressed

rendering is point samples I(x,y) provided by ray

tracing. Unlike conventional rasterizers, which

naturally perform pixel writes for each piece of

geometry in a raster scan order, ray tracers can

sample the image at arbitrary locations in an arbitrary

order, which gives rendering compression schemes

much more freedom to efficiently skip sampling in

smooth areas. Commercial GPU ray intersection

libraries such as NVIDIA’s OptiX [Park10] can trace

over 100 million rays per second for general polygon

meshes of approximately 100K triangles; the best

research renderers [Bikk12] can approach a billion

rays per second.

A conventional Whitted-style recursive raytracer

[Whit80] produces a deterministic output color at a

given screen location, which is convenient for

rendering because only a single sample is needed per

pixel. A distribution ray tracer [Cook86], by

contrast, jitters ray samples in space and time to

avoid aliasing and produce a correct average result,

but each individual ray is merely a random estimate

of this true average. Path tracing is a style of

distribution ray tracing used to compute global

illumination effects, and since the single traced path

can be implemented with iteration instead of

recursion, it avoids the incoherent memory accesses

of a stack, making it more amenable to efficient GPU

implementation and today nearly affordable in real

time [Bikk13]. When rays vary like this, the true

image represents an expected value, and our

rendering may need to take several samples and

estimate a sample mean.

Selection: Is Sampling Needed?

The selection phase determines if existing image

samples adequately capture the appearance variation

in the scene, or if additional samples are needed.

One approach is to analytically bound the variation in

the image, such as via radiance interpolants [Bala99],

but the price for this predictability is restrictions on

geometry, lighting, and shaders. In the more general

case, the image is unknown, making selection a

problem of spatial statistics.

If selection is based only on existing samples, a small

isolated object such as a star that is missed by the

initial sampling is unlikely to ever be recovered. If

this is not tolerable, it would be possible to insert

known information into the selection process to

guarantee small features are sampled, such as the

camera projection coordinates of small objects, or an

estimate of specular highlight locations from an

environment map approximating the scene lighting.

Selection need not depend only on the image samples

so far—we could add a selection bias to render more

detail in places we expect the viewer to examine

closely, such as faces, text labels, or moving objects.

Rendering selection bias based on eye tracking could

deliver increased resolution to the user’s fovea while

minimizing rendering effort in peripheral vision.

Interpolation: Image Reconstruction

Given a sparse set of samples, we need to reconstruct

a full dense grid of image pixels for final output.

For the general case of reconstructing a dense grid

from arbitrary sparse samples, the geostatistics

technique of kriging would be an ideal tool, except

that it is too slow. Typical implementations scale at

best quadratically with the number of sample points,

and even recent CUDA GPU kriging [Srin10] is at

best dozens of times too slow for realtime work.

A faster technique for sparse sample reconstruction

might be to build a finite element triangulation using

the image samples as vertices, then evaluate finite

element shape functions to interpolate a continuous

version of the image. High quality 2D Delaunay

triangulations have historically been used for this,

including edge constraints to match color

discontinuities along object edges [Pigh97]. 2D

Delaunay triangulation has recently been extended to

the GPU [Qi13], with the latest algorithms and

hardware running at framerate for approximately 1

million points, although this fully occupies a high-

end desktop GPU, leaving little time for raytracing

the underlying sample points.

We present an efficient pyramidal rendering scheme

in the next section. A more sophisticated

interpolation scheme might also include temporal

information, such as using finished full-resolution

pixels from previously rendered frames, similar to

MPEG’s motion vector based frame prediction.

Channel Demultiplexing

JPEG image compression separates color from image

brightness, and can compress this luminance data

using higher spatial resolution than color data,

resulting in better compression than compressing all

channels uniformly. Similarly, it can be

advantageous to decouple various rendering channels

for better overall performance.

The simplest channels to demultiplex are texture and

illumination. Because texture changes rapidly, but

illumination generally changes smoothly, much

better results can be obtained by interpolating

illumination across pixels, while sampling texture per

pixel [Pigh97, Bala99]. Similarly, multi-bounce

global illumination is expensive to compute via path

tracing [Bikk12] but often varies predictably, while

direct illumination is inexpensive to compute yet can

vary rapidly due to sharp shadows. We can compute

these two forms of illumination in separate passes,

and use a higher render time compression rate on the

expensive global illumination step, similar to the

recent work on interpolating the global illumination

light field [Leht12].

As another example, in aurora rendering, the

foreground aurora is smooth and hence interpolates

well but is computationally expensive to sample,

while the background stars are computationally

cheap but interpolate poorly. Hence it is better to

separately render the aurora channel, using its strong

spatial redundancy to speed up the process, and then

composite in the background stars as a final pass.

PYRAMIDAL RENDERING

As an example of time compressed rendering, we

implemented a simple adaptive pyramidal renderer.

This renderer begins by sampling at each center of a

coarse grid of “macropixels”, which are blocks of

4x4 full-sized pixels—this is 1/16 the data (6.25%) of

a full resolution image.

To create each finer image in the pyramid, for each

finer grid pixel we first use an error metric to

measure the spatial color variation in the coarser grid

to determine if a new sample is required. If so, we

sample the image at the fine grid pixel center; if not,

we interpolate the color at that pixel from the

coarser grid. This sample-or-interpolate process can

be repeated to generate finer and finer grids until the

desired resolution is reached—this could even exceed

1:1 pixel resolution, for a scene-adaptive version of

multisample antialiasing. In the next section, we

numerically evaluate various error metrics, and

determine the best is a simple low-order polynomial

fit to nearby colors, compared with a small stencil of

neighboring coarse pixels. Currently, our error

metrics only use pixel colors from the coarse grid,

but could be extended to exploit temporal

redundancy from the previous frame, or other

information such as scene geometry.

Because each grid level is a regular 2D image, and

grids are generated one level at a time, this technique

matches even decade-old GPU hardware—it can be

implemented using a simple OpenGL (or even

WebGL) shader shown below using rendering passes

at ¼ resolution, then ½, and finally full resolution.

This technique also automatically generates a few

coarser mipmap levels of the onscreen image, which

could be useful for bloom effects, or postprocessed

depth of field blurring.

// GLSL fragment shader for pyramidal rendering

varying vec2 pix; // fine target texture coordinates

uniform sampler2D coarser; // coarser grid texture

uniform bool coarsest; // true during first pass

uniform float threshold; // color error allowed

void main(void) {

 if(coarsest || errorMetric(coarser, pix)>threshold)

 gl_FragColor = sampleScene(pix);

 else // interpolate from coarser grid

 gl_FragColor = texture2D(coarser,pix);

}

As shown in Figure 1, sampling the pixel centers

results in the coarse and fine grids being offset,

which means each fine pixel is the same distance

from the nearest coarse pixel, but also means coarse

pixel samples cannot be reused directly. In the worst

case, where the sample selection scheme chooses to

render every pixel at every level, we would render

1+¼ +1/16+1/64+... = 1⅓ times more pixels than a

naive full resolution direct rendering. An alternative

might be to render the corners of pixels, so ¼ of the

fine pixels are coincident with a coarse pixel and can

be copied directly, but we find this makes

interpolation more difficult to perform well, while

sampling pixel centers produces smooth
3
 interpolated

curves even using trivial bilinear interpolation.

Bilinear interpolation is also very GPU friendly and

is monotonicity-preserving, meaning it does not

suffer from ringing artifacts near sharp edges.

Figure 1: Interpolating a coarse (C) 3x2 pixel image

to a finer (F) 6x4 pixel image.

3. PERFORMANCE RESULTS

We measured the performance of our pyramidal

rendering algorithm for two interactive renderers and

a variety of still images.

Pyramid Level Sensitivity

Starting with a coarse image pyramid level, such as

16x16 macroblocks, requires fewer samples at a

given error threshold, but reconstructed image

accuracy is poor because the coarse levels tends to

skip over small features, which are then interpolated

away. Starting with a finer grid, such as 4x4 pixel

blocks, more reliably captures these features. Even if

the selection threshold is adjusted so the coarse grid

results in the same number of samples, a finer initial

grid spreads the samples more evenly, resulting in

lower reconstruction error. However, a finer initial

grid requires more initial samples, leaving fewer

remaining to allocate to the detected high-detail

regions—see the numerical results averaged across

our benchmark image library in Table 1.

3
 Repeated bilinear interpolation approaches gaussian

impulse response, per the central limit theorem.

Begin pyramid at ½ resolution (fine) 2.18%

Begin pyramid at ¼ resolution 2.31%

Begin pyramid at ⅛ resolution 2.60%

Begin pyramid at 1/16 resolution 2.84%

Table 1: At a fixed rendering rate of ⅓ sample per

pixel, average reconstruction error rates improve with

finer starting grid level, even though the coarser

starting grids require fewer initial samples.

Interpolation Error Metric

When creating increasingly finer pyramid levels from

a coarser level, our rendering algorithm needs to

decide between sampling the underlying scene or

interpolating the pixel. Generally, we want to

interpolate in smooth featureless regions, and sample

where things are changing, which we must

distinguish according to an error metric. We found

changing the error metric used during image

expansion had a surprisingly weak effect—generally,

an area that will interpolate well is smooth enough to

have a low error under nearly any reasonable metric.

Table 2 summarizes average reconstruction errors for

our test scenes under a variety of error metrics, using

our usual ⅓ sample per pixel rate, and beginning the

image pyramid expansion at ¼ resolution.

We empirically determined the best error metric is a

low-order polynomial fit to the nearby colors,

compared against a compact stencil of neighboring

pixels. That is, we take a sample if

error threshold

Here R is the coarse image reconstructed so far, we

examine the colors around a coarse pixel R(x,y), fit a

2D polynomial with t terms, and compare the

polynomial to each neighboring pixel R(x+i,y+j).

For example, is a constant color equal to R(x,y),

 is a three-term 2D linear polynomial color fit

=A+Bi+Cj, while is a general 2D quadratic.

Table 2 summarizes reconstructed image error rate

for various polynomial orders and stencil sizes. First,

smaller stencils work better. Expanding the neighbor

list beyond a few pixels causes false positives, as the

longer reach causes unnecessary sampling far from

real features. Using higher order polynomials causes

false negatives, as the polynomial infers smooth

higher-order curves in irregular areas that should

instead be sampled. But the difference between

plausible metrics is small, a few tenths of a percent in

average color error. Using an implausible metric

such as random pixel refinement produces over twice

as much error—and only manages that well due to

the dense sampling on the initial coarse grid.

 4 8 12 20 24 46

P
1
 2.31% 2.32% 2.36% 2.48% 2.53% 2.63%

P
3
 2.31% 2.26% 2.29% 2.34% 2.35% 2.41%

P
5
 *4 2.54% 2.25% 2.31% 2.31% 2.34%

P
9
 * * 2.28% 2.30% 2.29% 2.30%

Table 2: Varying the error metric’s polynomial order

(vertical) and testing stencil (horizontal) during

sample selection affects reconstruction accuracy.

If we compare these metrics against the “contrast”

metric max-min/(max+min) [Mitc87], we find using

the contrast metric on a pixel and its 8 neighbors as a

pyramidal error metric for adaptive refinement

produces an average color error of 3.06%, worse than

any of the other metrics we tested. This is because

the contrast metric produces a relative color

difference, amplifying absolute differences with low

intensity, such as shadows.

Interactive Aurora Renderer

To demonstrate rendering time compression in an

interactive renderer, we applied the technique to an

aurora borealis GPU volume renderer [Lawl11],

which is also in use by other researchers [Ishi11].

For each pixel, this renderer steps along the 3D

camera ray through an auroral curtain, accumulating

emitted light. A distance field acceleration structure

allows the renderer to take much longer steps in the

empty volumes between curtains, and it uses a closed

form analytic approximation for the ray’s integral

through an exponential atmosphere, allowing

interactive performance on modern GPU hardware.

At 720p output resolution on a modest embedded

Intel Ivy Bridge Mobile graphics chip, this renderer

gives a tolerable 8-15 frames per second (fps).

Adding pyramidal rendering time compression was

surprisingly straightforward: a new GLSL shader

function was added to perform pixel selection and

interpolation, and the old renderer shader main

became the sampling function, thus maintaining the

original renderer’s single-shader design. We

modified our pyramidal code to locate its pixels

using the built-in onscreen location gl_FragCoord,

which allowed the renderer to keep its existing

texture coordinates and geometry coordinate system.

4 * Indicates the polynomial fits the stencil exactly,

so we must use a larger stencil to measure fit error.

We used three passes (at ¼, ½, and full resolution),

and our error metric was with an 8-neighbor

stencil. Finally, we applied the unpredictable

background star field and planet city lights textures

only during the final compositing pass, rather than at

each pyramid level, so the pyramidal renderer was

only working with the smooth aurora and atmosphere

layers—the renderer works even with all channels

multiplexed, but then stars blink in and out of the

rendering.

Figure 2: Screenshot from pyramidal aurora

renderer, using a 1% average color error threshold.

The result, shown in Figure 2, is pyramidal rendering

increases performance about twofold, to 16-28 fps,

using a 0.6% average color error threshold which is

virtually indistinguishable from the original

rendering. We can increase performance about

threefold, to 22-37 fps, using a 1% error threshold,

although small blurry patches are just perceptible on

distant curtains. Using a higher error threshold gives

even better framerates, but compression artifacts

begin to be more noticable. Framerates for a

benchmark camera path are shown in Figure 3.

Figure 3: Framerate for pyramidal aurora renderer

using different error thresholds, compared to the

original naive single sample per pixel renderer.

Pyramidal Fractal Renderer

Since our rendering time compression scheme is

content dependent, the most challenging scenes have

detail at all scales. Hence for a more difficult test of

our pyramidal rendering scheme, we implemented a

pyramidal Mandelbrot set renderer on the GPU. To

allow for greater zoom factors before numerical

issues arise, but still use GPU-friendly single

precision floating point, we used the “double single”

technique [Bail05] to emulate double precision

floating point using single precision operations. Our

benchmark is a zoom into the spiral, shown in Figure

4, centered at -0.7451580638+i 0.1125749162,

scaling from unit field of view to 10
-6

, iteration count

limited to 255. We used four pyramid levels, starting

at ⅛ resolution, and got slightly better performance

by storing the iteration count in the pyramid pixels,

and applying the color table only at the final full

resolution pass.

Figure 4: A spiral in the Mandelbrot set, as

reconstructed by our pyramidal renderer at a 6%

error threshold.

Figure 5 shows the performance of our pyramidal

renderer, compared to a naive single sample per pixel

renderer, both on an NVIDIA GeForce 650M.

Unlike the smooth curves of the aurora, which slowly

degrade with increasing error threshold, richly

textured fractal surfaces reconstruct nearly

independent of the refinement error threshold. This

is because there is so much detail near the set that

any reasonable error threshold will take further

samples there; and there is so little detail in smooth

regions even a zero error threshold—sample unless

binary identical—will still not refine them. The

resulting image only begins to noticeably degrade at

an enormous 12% average neighborhood error

refinement threshold.

Pyramidal rendering provides a huge fourfold

performance improvement early on, while zooming

past large flat regions of Mandelbrot set points.

These points all require the maximum number of

iterations, so each sample is slow to compute, but the

colors are identical, so adaptive interpolation saves

an enormous amount of work. Approaching the

detailed area near the set boundary, nearly the entire

image is full of detail, and adaptivity provides

negligible speedup, and even a slight slowdown for a

zero error threshold. After entering the spiral, only

the smooth regions between the spiral arms can be

interpolated. Figure 4 shows the area of these

smooth regions exceeds 50%, but the iteration trip

count is lower in the smooth areas, so the speedup

from interpolating through these smooth regions

averages only 30%. As the zoom factor increases,

the average non-set iteration trip count increases, so

adaptive pyramidal rendering provides increasing

speedup.

Figure 5: Framerate for pyramidal fractal renderer

using different error thresholds, compared to naive

renderer.

Still Image Reconstruction

The accuracy of our rendering time compression

technique depends strongly on the scene being

rendered—a flat blue sky could be reconstructed

perfectly using a single sample per frame, while a

high contrast unpredictable black and white pattern

such as a QR code will require dense sampling. Thus

while the renderers described above work well, it

would be useful to evaluate this technique for more

realistic general scenes.

For an unbiased benchmark set of comparison

scenes, we have chosen to reconstruct the raytraced

images from the final two years (2005 and 2006) of

the Internet Ray Tracing Competition [irtc06]. Since

this was a still image competition, we can assume

scenes were designed and judged purely for

aesthetics, not for renderer performance. We

included all the winning and honorable mention

images submitted at a resolution over 720 pixels in

portrait or landscape aspect ratio, a total of 32

images, and includes the natural, artificial, and

artistic scenes shown in Figure 6.

Because the original 3D raytraced scenes are largely

unavailable, to test our reconstruction algorithm,

when taking a sample instead of tracing a ray as we

would for an interactive application, we look up the

location in the raytraced image. Since textures and

lighting effects are combined, this represents a worst

case for a time compression renderer. The image

also acts as the reference, so we can measure the

accuracy of our reconstructions. This is clearly not

an efficient way to copy a texture, but it allows us to

experimentally test different error metrics and

stencils, and measure reconstruction accuracy for a

variety of scenes.

Figure 6 shows each scene sorted by reconstruction

accuracy at a sampling rate of ⅓ sample per pixel.

Highly textured and outdoor scenes are near the top,

as they are difficult to reconstruct accurately at this

rate, but the average color error per scene for these

images is still under 5.5%. Smooth or abstract scenes

near the bottom reconstruct very easily; the average

color error of the bottom two rows is 1%.

Figure 6: Reconstructed benchmark images from the

Internet Ray Tracing Competition, sorted top-to-

bottom in raster order by increasing reconstruction

accuracy, at a sample rate of ⅓ samples per pixel.

Figure 7: Accuracy of images reconstructed with our

rendering time compression algorithm, when using

different numbers of samples per pixel. The lines

represent different source images. Figure 6 shows a

vertical transect at ⅓ samples per pixel, shown here

by the vertical line.

Figure 7 varies the number of rays sampled per pixel,

and shows the absolute color error in the resulting

rendering with our technique, illustrating the quality

speed tradeoff. Reconstructed image accuracy

increases with more samples, but only asymptotically

approaches zero. In particular, note that taking one

point sample per pixel does not yield zero error for

most images, due to the need to area sample sub-

pixel detail near sharp edges.

Figure 8 shows a 1024x768 pixel reconstruction of a

12 megapixel photograph using our technique.

4. CONCLUSIONS

We have presented a scheme called rendering time

compression, which carefully selects regions of the

scene that need more detail, takes raytraced samples

there, and interpolates the remaining areas of the

image. The net result is to cast less than one ray per

pixel, but still derive an accurate approximation of

the rendered scene.

One key difficulty in both illumination and

antialiasing is estimating area integrals from the point

samples of classic ray tracing. Feature film-quality

renderers may use thousands of rays per pixel to

reduce per-ray noise, taking hours per frame. An old

technique known as cone tracing effectively thickens

rays into cones, allowing it to evaluate at least box-

filtered integrals directly, but the difficulty has

always been how to evaluate the cone-geometry

integral efficiently for general scenes with occlusion.

A technique using a mipmap-friendly voxel geometry

approximation has recently been used to compute

global illumination on the GPU using cone tracing

[Cras11]. A cone tracer could allow much higher

rendering time compression rates, by providing

smoother estimates of broad regions, and could even

be extended to output a brightness variance estimate

for sample selection, or directly convolve portions of

the scene with a spectral basis function.

With a careful implementation, it is possible our

technique could be extended beyond raytracers and

other point-sample renderers. For example, in a

conventional rasterizer such as DirectX or OpenGL,

for a shader-limited program our interpolation step

could skip over predictable pixels, reducing the

average per-fragment time enough to outweigh the

cost to re-traverse the scene geometry at each

pyramid level.

Rendering time compression is a promising

technique for accelerating a variety of rendering

problems. We have shown a simple and GPU-

friendly adaptive pyramidal rendering technique that

can choose where to interpolate two out of every

three pixels, resulting in a several-fold speedup for

interactive renderers, while only affecting colors by a

few percent. But the much higher image

compression rates achieved by existing still and

motion image compression algorithms indicate that

there is still more unexploited redundancy in

rendered imagery. It is possible that even better

results could be achieved by more closely following

an existing compression scheme, such as designing a

sample selection and interpolation scheme that

directly estimates the rendered image’s discrete

cosine transform (DCT) frequency coefficients, for

example by using the DCT analog of a sparse Fourier

transform, which we look forward to exploring.

Other promising areas for future work involve

motion estimation to exploiting frame coherence via

our knowledge of the motion of the scene geometry

and camera, directly outputting compressed MPEG

bitstreams from the renderer, and decoupling

illumination from texturing for faster global

illumination effects.

5. REFERENCES

[Bail05] Bailey, D., Hida, Y., Li, X., Thompson, B.,

Jeyabalan, K., and Kaiser, A. High-Precision

Software: DSFUN90. Lawrence Berkeley Lab,

http://crd-legacy.lbl.gov/~dhbailey/mpdist/, 2005.

[Bala99] Bala, K., Dorsey, J., and Teller, S.

Radiance interpolants for accelerated bounded-

error ray tracing. ACM Transactions on Graphics,

18(3), pp. 213-256, 1999.

[Bikk12] Bikker, J. Ray Tracing for Real-Time

Games, Technische Universiteit Delft PhD thesis,

2012.

[Bikk13] Bikker, J., and van Schijndel, J. The

Brigade Renderer: A Path Tracer for Real-Time

Games, International Journal of Computer

Games Technology, vol. 2013, Article ID 578269,

14 pages, 2013.

[Cook86] Cook, R.L. Stochastic sampling in

computer graphics. ACM Transactions on

Graphics 5(1), 51-72, 1986.

[Cras11] Crassin, C., Neyret, F., Sainz, M., Green,

S., and Eisemann, E. Interactive indirect

illumination using voxel cone tracing. Computer

Graphics Forum 30(7), pp. 1921-1930, 2011.

[Deme98] Demers, J., Yoon, I., Kim, T.Y., and

Neumann, U. Accelerating Ray Tracing by

Exploiting Frame-to-Frame Coherence.
University of Southern California Computer

Science Dept, USC-TR-98-668, 1998.

http://crd-legacy.lbl.gov/~dhbailey/mpdist/

[irtc06] Internet Ray Tracing Competition,

http://www.irtc.org/stills/, 2006.

[Ishi11] Ishikawa, T., Yue, Y., Iwasaki, K.,

Dobashi, Y., and Nishita, T. Modeling of aurora

borealis using the observed data. Proc. 27th

Spring Conference on Computer Graphics

(SCCG), pp. 13-16, 2011.

[Lawl11] Lawlor, O. S., & Genetti, J. Interactive

volume rendering aurora on the GPU. Journal of

WSCG, 2011.

[Leht12] Lehtinen, J., Aila, T., Laine, S., and

Durand, F. Reconstructing the indirect light field

for global illumination. ACM Trans. Graph. TOG,

31(4), p. 51, 2012.

[Levo90] Levoy, M. Volume rendering by adaptive

refinement. Visual Computer, 6(1), pp. 2-7, 1990.

[Mitc87] Mitchell, D.P., Generating antialiased

images at low sampling densities. ACM

SIGGRAPH Computer Graphics, 1987, vol. 21,

pp. 65–72.

[Otte13] Otte, V. Path tracing on GPU. Bachelor’s

Thesis, Masaryk Univerzity Faculty of

Informatics, 2013.

[Park10] Parker, S. G., Bigler, J., Dietrich, A.,

Friedrich, H., Hoberock, J., Luebke, D.,

McAllister, D., McGuire, M., Morley, K.,

Robison, A., and Stich, M. Optix: a general

purpose ray tracing engine. ACM Transactions on

Graphics, 29(4), article 66, 2010.

[Pigh97] Pighin, F.P., Lischinski, D., and Salesin,

D. Progressive previewing of ray-traced images

using image-plane discontinuity meshing.

Rendering Techniques 97, pp. 115-125, 1997.

[Qi13] Qi, M., Cao, T.T., and Tan, T.S.

Computing 2D Constrained Delaunay

Triangulation Using the GPU, IEEE

Transactions on Visualization and Computer

Graphics, 19(5), pp.736-748, May 2013.

[Sen11] Sen, P., and Darabi, S. Compressive

rendering: A rendering application of compressed

sensing. IEEE Vis. Comput. Graph., 17(4), pp.

487–499, 2011.

[Srin10] Srinivasan, B.V., Duraiswami, R., and

Murtugudde, R. Efficient kriging for real-time

spatio-temporal interpolation. Conf. on

Probability and Statistics in the Atmospheric

Sciences, pp. 228-235, 2010.

[Whit80] Whitted, T. An improved illumination

model for shaded display. Communications of the

ACM, 23(6), pp. 343-349, 1980.

Figure 8: Reconstructing a photograph using ⅓ sample per pixel with our pyramidal technique. The largest

reconstruction errors are unpredictable dots in the cat’s coloring, and small cracks in the wood floor.

http://www.irtc.org/stills/

