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ABSTRACT 
Just as image data compression is designed to save space while preserving the essence of an image, we present 

an adaptive pyramidal rendering scheme designed to save rendering time while maintaining acceptable image 

quality.  Our coarse-to-fine scheme predicts when and where it is safe to take less than one sample per output 

pixel, and exploits spatial redundancy to predict pixel colors in the resulting gaps, both of which can be 

performed at framerate in realtime on a modern GPU.  As a lossy compression method, we present experimental 

data on the rendering time versus image quality tradeoff for several example renderers. 
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1. INTRODUCTION 

Several current commercial trends are converging to 

require higher speed rendering in computer graphics. 

The transition to battery-powered mobile devices 

with modest onboard graphics processing ability, 

such as phones and tablets, means rendering 

efficiency is increasingly important. Graphics display 

pixel densities are also increasing, with 1080p mobile 

displays,
1
 and laptop displays exceeding 5 

megapixels.
2
  Stereoscopic 3D output devices such as 

stereo headgear are becoming affordable, but require 

high resolution imagery to be generated at minimum 

latency, such as 1080p at 120Hz.  Finally, there are 

well known rendering techniques such as path tracing 

illumination that are more general and higher quality 

than the current state of the art, but are only 

beginning to be affordable in real time [Otte13]. 

Modern lossy image data compression techniques 

such as JPEG can compress a still image by 50-fold, 

to less than one bit per color pixel, yet still 

reconstruct a high quality image nearly 

indistinguishable from the original.  The reason this 

is possible is that most images have a high degree of 

redundancy, such as similar nearby pixel colors.  

Video compression schemes such as MPEG can 

produce even higher compression ratios by taking 

advantage of temporal redundancy, such as 

similarities between adjacent video frames.   

This paper presents a general scheme called 

“rendering time compression” which aims to speed 

                                                           
1
 For example, the Samsung Galaxy S4 has a 5 inch 

display at 1920x1080 resolution. 
2
 For example, the Apple MacBook Pro has a 15 inch 

Retina display at 2880x1800 resolution. 

up rendering time, by exploiting redundancy in the 

rendered output pixels. The rendering time saved 

could be spent on higher resolution output, more 

detailed geometry, or more sophisticated rendering 

techniques such as global illumination; or used to 

deliver higher quality content on lower end devices 

such as cell phones.  When a cloud-based renderer’s 

mobile output device is only accessible via a slow 

network link, extensive data compression is already 

required, so rendering time compression could 

increase overall efficiency and make new graphics 

applications affordable. 

Prior Work 

Spatial coherence in rendering is well known and has 

long been exploited.  The seminal raytracing work 

[Whitt80] used a spatial subdivision approach to 

perform per-pixel antialiasing, and Mitchell [Mitc87] 

adaptively placed randomized samples for 

antialiasing, but neither demonstrated interpolation of 

finished pixels. An incremental raycasting volume 

renderer [Levo90] cast a sparse grid of rays across 

the dense grid of pixels, starting at a sampling rate of 

one ray for every four pixels, then adaptively refined 

regions where colors differed by more than a fixed 

epsilon value, but did not demonstrate more than one 

level of refinement. 

Compressive Rendering [Sen11] is a wavelet 

technique that can reconstruct a high-quality image 

from a sparse of image samples.  This has delivered  

good results for real scenes, but the sparse linear 

algebra required for image reconstruction takes 

several minutes per frame, making the technique too 

slow for interactive rendering.   

Temporal coherence has been exploited previously, 

such as an image caching raytracer [Deme98], 



although in the pre-GPU era antialiasing was 

expensive, so aliasing limited the number of times a 

frame could be reused. Other ray tracers exploit both 

temporal and spatial coherence, such as radiance 

interpolants [Bala99] which can provide guaranteed 

radiance error bounds while making a per-pixel 

choice between interpolation and ray tracing.  One 

difficulty with temporal coherence schemes is 

handling non-static geometry, such as character 

animation or simulated physics. 

2. COMPRESSION THEORY 

Mathematically, we can treat the true rendered image 

I as a function, 

 

The domain of the image function is the pixel 

coordinates (x,y), where  and  

for an image with  pixels.  The image also 

depends on the camera model, lighting, and scene 

geometry and shaders, but we will elide those here.  

The range of the image function is an n dimensional 

output “color” space, most commonly n=3 for 

conventional RGB color, but often n=4 to include an 

alpha channel or for CMYK print output, and in 

general n could be quite large for a sophisticated 

renderer that includes polarimetry and multispectral 

sampling, which we will nevertheless refer to as 

“color” here. 

Our goal in any rendering process is to 

computationally reconstruct the image function’s 

shape throughout its domain, creating a rendering 

R(x,y) with the same domain and range as the true 

image, and ideally with the same colors.  Hence we 

seek to minimize the reconstructed image error E, 

as scaled by a perceptual bias function B. 

 

A simple perceptual bias function B might depend 

only on the p-norm difference between the true and 

rendered colors; for our experimental work we use 

, the L1-norm color difference or sum of 

absolute color channel differences.  A common 

choice is mean-squared-error (MSE),  

for n pixels, although this ignores small differences.   

A more sophisticated function might also weight 

differences in image gradients, such as 

 (for scalar weights  and ), or 

amplify differences in perceptually salient areas, such 

as the “structural similarity” metric. Mitchell 

[Mitc87] weighted differences in green more heavily, 

to match the human eye’s color-dependent contrast 

sensitivity.   

Sampling: Measure the Image 

Our primary tool to construct a time-compressed 

rendering is point samples I(x,y) provided by ray 

tracing.  Unlike conventional rasterizers, which 

naturally perform pixel writes for each piece of 

geometry in a raster scan order, ray tracers can 

sample the image at arbitrary locations in an arbitrary 

order, which gives rendering compression schemes 

much more freedom to efficiently skip sampling in 

smooth areas.  Commercial GPU ray intersection 

libraries such as NVIDIA’s OptiX [Park10] can trace 

over 100 million rays per second for general polygon 

meshes of approximately 100K triangles; the best 

research renderers [Bikk12] can approach a billion 

rays per second. 

A conventional Whitted-style recursive raytracer 

[Whit80] produces a deterministic output color at a 

given screen location, which is convenient for 

rendering because only a single sample is needed per 

pixel.  A distribution ray tracer [Cook86], by 

contrast, jitters ray samples in space and time to 

avoid aliasing and produce a correct average result, 

but each individual ray is merely a random estimate 

of this true average.  Path tracing is a style of 

distribution ray tracing used to compute global 

illumination effects, and since the single traced path 

can be implemented with iteration instead of 

recursion, it avoids the incoherent memory accesses 

of a stack, making it more amenable to efficient GPU 

implementation and today nearly affordable in real 

time [Bikk13].  When rays vary like this, the true 

image represents an expected value, and our 

rendering may need to take several samples and 

estimate a sample mean. 

Selection: Is Sampling Needed? 

The selection phase determines if existing image 

samples adequately capture the appearance variation 

in the scene, or if additional samples are needed.  

One approach is to analytically bound the variation in 

the image, such as via radiance interpolants [Bala99], 

but the price for this predictability is restrictions on 

geometry, lighting, and shaders.  In the more general 

case, the image is unknown, making selection a 

problem of spatial statistics.   

If selection is based only on existing samples, a small 

isolated object such as a star that is missed by the 

initial sampling is unlikely to ever be recovered.  If 

this is not tolerable, it would be possible to insert 

known information into the selection process to 

guarantee small features are sampled, such as the 

camera projection coordinates of small objects, or an 

estimate of specular highlight locations from an 

environment map approximating the scene lighting. 

Selection need not depend only on the image samples 

so far—we could add a selection bias to render more 

detail in places we expect the viewer to examine 

closely, such as faces, text labels, or moving objects.  

Rendering selection bias based on eye tracking could 



deliver increased resolution to the user’s fovea while 

minimizing rendering effort in peripheral vision. 

Interpolation: Image Reconstruction 

Given a sparse set of samples, we need to reconstruct 

a full dense grid of image pixels for final output.   

For the general case of reconstructing a dense grid 

from arbitrary sparse samples, the geostatistics 

technique of kriging would be an ideal tool, except 

that it is too slow.  Typical implementations scale at 

best quadratically with the number of sample points, 

and even recent CUDA GPU kriging [Srin10] is at 

best dozens of times too slow for realtime work. 

A faster technique for sparse sample reconstruction 

might be to build a finite element triangulation using 

the image samples as vertices, then evaluate finite 

element shape functions to interpolate a continuous 

version of the image.  High quality 2D Delaunay 

triangulations have historically been used for this, 

including edge constraints to match color 

discontinuities along object edges [Pigh97].  2D 

Delaunay triangulation has recently been extended to 

the GPU [Qi13], with the latest algorithms and 

hardware running at framerate for approximately 1 

million points, although this fully occupies a high-

end desktop GPU, leaving little time for raytracing 

the underlying sample points.   

We present an efficient pyramidal rendering scheme 

in the next section.  A more sophisticated 

interpolation scheme might also include temporal 

information, such as using finished full-resolution 

pixels from previously rendered frames, similar to 

MPEG’s motion vector based frame prediction. 

Channel Demultiplexing 

JPEG image compression separates color from image 

brightness, and can compress this luminance data 

using higher spatial resolution than color data, 

resulting in better compression than compressing all 

channels uniformly.  Similarly, it can be 

advantageous to decouple various rendering channels 

for better overall performance.  

The simplest channels to demultiplex are texture and 

illumination.  Because texture changes rapidly, but 

illumination generally changes smoothly, much 

better results can be obtained by interpolating 

illumination across pixels, while sampling texture per 

pixel [Pigh97, Bala99]. Similarly, multi-bounce 

global illumination is expensive to compute via path 

tracing [Bikk12] but often varies predictably, while 

direct illumination is inexpensive to compute yet can 

vary rapidly due to sharp shadows.  We can compute 

these two forms of illumination in separate passes, 

and use a higher render time compression rate on the 

expensive global illumination step, similar to the 

recent work on interpolating the global illumination 

light field [Leht12].  

As another example, in aurora rendering, the 

foreground aurora is smooth and hence interpolates 

well but is computationally expensive to sample, 

while the background stars are computationally 

cheap but interpolate poorly.  Hence it is better to 

separately render the aurora channel, using its strong 

spatial redundancy to speed up the process, and then 

composite in the background stars as a final pass.  

PYRAMIDAL RENDERING 

As an example of time compressed rendering, we 

implemented a simple adaptive pyramidal renderer.  

This renderer begins by sampling at each center of a 

coarse grid of “macropixels”, which are blocks of 

4x4 full-sized pixels—this is 1/16 the data (6.25%) of 

a full resolution image.   

To create each finer image in the pyramid, for each 

finer grid pixel we first use an error metric to 

measure the spatial color variation in the coarser grid 

to determine if a new sample is required.  If so, we 

sample the image at the fine grid pixel center; if not, 

we interpolate the color at that pixel from the 

coarser grid.  This sample-or-interpolate process can 

be repeated to generate finer and finer grids until the 

desired resolution is reached—this could even exceed 

1:1 pixel resolution, for a scene-adaptive version of 

multisample antialiasing. In the next section, we 

numerically evaluate various error metrics, and 

determine the best is a simple low-order polynomial 

fit to nearby colors, compared with a small stencil of 

neighboring coarse pixels.  Currently, our error 

metrics only use pixel colors from the coarse grid, 

but could be extended to exploit temporal 

redundancy from the previous frame, or other 

information such as scene geometry. 

Because each grid level is a regular 2D image, and 

grids are generated one level at a time, this technique 

matches even decade-old GPU hardware—it can be 

implemented using a simple OpenGL (or even 

WebGL) shader shown below using rendering passes 

at ¼ resolution, then ½, and finally full resolution.  

This technique also automatically generates a few 

coarser mipmap levels of the onscreen image, which 

could be useful for bloom effects, or postprocessed 

depth of field blurring. 

// GLSL fragment shader for pyramidal rendering 

varying vec2 pix; // fine target texture coordinates 

uniform sampler2D coarser; // coarser grid texture 

uniform bool coarsest; // true during first pass 

uniform float threshold; // color error allowed 

void main(void) { 

  if(coarsest || errorMetric(coarser, pix)>threshold) 

    gl_FragColor = sampleScene(pix); 

  else // interpolate from coarser grid 

    gl_FragColor = texture2D(coarser,pix); 

} 



As shown in Figure 1, sampling the pixel centers 

results in the coarse and fine grids being offset, 

which means each fine pixel is the same distance 

from the nearest coarse pixel, but also means coarse 

pixel samples cannot be reused directly.  In the worst 

case, where the sample selection scheme chooses to 

render every pixel at every level, we would render 

1+¼ +1/16+1/64+... = 1⅓ times more pixels than a 

naive full resolution direct rendering.  An alternative 

might be to render the corners of pixels, so ¼ of the 

fine pixels are coincident with a coarse pixel and can 

be copied directly, but we find this makes 

interpolation more difficult to perform well, while 

sampling pixel centers produces smooth
3
 interpolated 

curves even using trivial bilinear interpolation.  

Bilinear interpolation is also very GPU friendly and 

is monotonicity-preserving, meaning it does not 

suffer from ringing artifacts near sharp edges. 

 

Figure 1: Interpolating a coarse (C) 3x2 pixel image 

to a finer (F) 6x4 pixel image. 

3. PERFORMANCE RESULTS 

We measured the performance of our pyramidal 

rendering algorithm for two interactive renderers and 

a variety of still images. 

Pyramid Level Sensitivity 

Starting with a coarse image pyramid level, such as 

16x16 macroblocks, requires fewer samples at a 

given error threshold, but reconstructed image 

accuracy is poor because the coarse levels tends to 

skip over small features, which are then interpolated 

away.  Starting with a finer grid, such as 4x4 pixel 

blocks, more reliably captures these features. Even if 

the selection threshold is adjusted so the coarse grid 

results in the same number of samples, a finer initial 

grid spreads the samples more evenly, resulting in 

lower reconstruction error.  However, a finer initial 

grid requires more initial samples, leaving fewer 

remaining to allocate to the detected high-detail 

regions—see the numerical results averaged across 

our benchmark image library in Table 1. 

                                                           
3
 Repeated bilinear interpolation approaches gaussian 

impulse response, per the central limit theorem. 

 

Begin pyramid at ½ resolution (fine) 2.18% 

Begin pyramid at ¼ resolution 2.31% 

Begin pyramid at ⅛ resolution 2.60% 

Begin pyramid at 1/16 resolution 2.84% 

Table 1: At a fixed rendering rate of ⅓ sample per 

pixel, average reconstruction error rates improve with 

finer starting grid level, even though the coarser 

starting grids require fewer initial samples. 

Interpolation Error Metric 

When creating increasingly finer pyramid levels from 

a coarser level, our rendering algorithm needs to 

decide between sampling the underlying scene or 

interpolating the pixel.  Generally, we want to 

interpolate in smooth featureless regions, and sample 

where things are changing, which we must 

distinguish according to an error metric.  We found 

changing the error metric used during image 

expansion had a surprisingly weak effect—generally, 

an area that will interpolate well is smooth enough to 

have a low error under nearly any reasonable metric.  

Table 2 summarizes average reconstruction errors for 

our test scenes under a variety of error metrics, using 

our usual ⅓ sample per pixel rate, and beginning the 

image pyramid expansion at ¼ resolution.   

We empirically determined the best error metric is a 

low-order polynomial fit to the nearby colors, 

compared against a compact stencil of neighboring 

pixels. That is, we take a sample if  

error threshold 

Here R is the coarse image reconstructed so far, we 

examine the colors around a coarse pixel R(x,y), fit a 

2D polynomial  with t terms, and compare the 

polynomial to each neighboring pixel R(x+i,y+j).  

For example,  is a constant color equal to R(x,y), 

 is a three-term 2D linear polynomial color fit 

=A+Bi+Cj, while is a general 2D quadratic.   

Table 2 summarizes reconstructed image error rate 

for various polynomial orders and stencil sizes.  First, 

smaller stencils work better.  Expanding the neighbor 

list beyond a few pixels causes false positives, as the 

longer reach causes unnecessary sampling far from 

real features.  Using higher order polynomials causes 

false negatives, as the polynomial infers smooth 

higher-order curves in irregular areas that should 

instead be sampled.   But the difference between 

plausible metrics is small, a few tenths of a percent in 

average color error.  Using an implausible metric 

such as random pixel refinement produces over twice 

as much error—and only manages that well due to 

the dense sampling on the initial coarse grid. 



 

 

 4 8 12 20 24 46 

P
1
 2.31% 2.32% 2.36% 2.48% 2.53% 2.63% 

P
3
 2.31% 2.26% 2.29% 2.34% 2.35% 2.41% 

P
5
 *4 2.54% 2.25% 2.31% 2.31% 2.34% 

P
9
 * * 2.28% 2.30% 2.29% 2.30% 

Table 2: Varying the error metric’s polynomial order 

(vertical) and testing stencil (horizontal) during 

sample selection affects reconstruction accuracy.       

If we compare these metrics against the “contrast” 

metric max-min/(max+min) [Mitc87], we find using 

the contrast metric on a pixel and its 8 neighbors as a 

pyramidal error metric for adaptive refinement 

produces an average color error of 3.06%, worse than 

any of the other metrics we tested.  This is because 

the contrast metric produces a relative color 

difference, amplifying absolute differences with low 

intensity, such as shadows. 

 

Interactive Aurora Renderer 

To demonstrate rendering time compression in an 

interactive renderer, we applied the technique to an 

aurora borealis GPU volume renderer [Lawl11], 

which is also in use by other researchers [Ishi11].  

For each pixel, this renderer steps along the 3D 

camera ray through an auroral curtain, accumulating 

emitted light.  A distance field acceleration structure 

allows the renderer to take much longer steps in the 

empty volumes between curtains, and it uses a closed 

form analytic approximation for the ray’s integral 

through an exponential atmosphere, allowing 

interactive performance on modern GPU hardware.  

At 720p output resolution on a modest embedded 

Intel Ivy Bridge Mobile graphics chip, this renderer 

gives a tolerable 8-15 frames per second (fps).  

Adding pyramidal rendering time compression was 

surprisingly straightforward: a new GLSL shader 

function was added to perform pixel selection and 

interpolation, and the old renderer shader main 

became the sampling function, thus maintaining the 

original renderer’s single-shader design.  We 

modified our pyramidal code to locate its pixels 

using the built-in onscreen location gl_FragCoord, 

which allowed the renderer to keep its existing 

texture coordinates and geometry coordinate system.  

                                                           
4 * Indicates the polynomial fits the stencil exactly, 

so we must use a larger stencil to measure fit error. 

We used three passes (at ¼, ½, and full resolution), 

and our error metric was  with an 8-neighbor 

stencil.  Finally, we applied the unpredictable 

background star field and planet city lights textures 

only during the final compositing pass, rather than at 

each pyramid level, so the pyramidal renderer was 

only working with the smooth aurora and atmosphere 

layers—the renderer works even with all channels 

multiplexed, but then stars blink in and out of the 

rendering.   

 

Figure 2: Screenshot from pyramidal aurora 

renderer, using a 1% average color error threshold. 

 

The result, shown in Figure 2, is pyramidal rendering 

increases performance about twofold, to 16-28 fps, 

using a 0.6% average color error threshold which is 

virtually indistinguishable from the original 

rendering.  We can increase performance about 

threefold, to 22-37 fps, using a 1% error threshold, 

although small blurry patches are just perceptible on 

distant curtains.  Using a higher error threshold gives 

even better framerates, but compression artifacts 

begin to be more noticable. Framerates for a 

benchmark camera path are shown in Figure 3. 

 

Figure 3: Framerate for pyramidal aurora renderer 

using different error thresholds, compared to the 

original naive single sample per pixel renderer. 

Pyramidal Fractal Renderer 

Since our rendering time compression scheme is 

content dependent, the most challenging scenes have 

detail at all scales.  Hence for a more difficult test of 

our pyramidal rendering scheme, we implemented a 



pyramidal Mandelbrot set renderer on the GPU.  To 

allow for greater zoom factors before numerical 

issues arise, but still use GPU-friendly single 

precision floating point, we used the “double single” 

technique [Bail05] to emulate double precision 

floating point using single precision operations.  Our 

benchmark is a zoom into the spiral, shown in Figure 

4, centered at -0.7451580638+i 0.1125749162, 

scaling from unit field of view to 10
-6

, iteration count 

limited to 255.  We used four pyramid levels, starting 

at ⅛ resolution, and got slightly better performance 

by storing the iteration count in the pyramid pixels, 

and applying the color table only at the final full 

resolution pass. 

 

Figure 4: A spiral in the Mandelbrot set, as 

reconstructed by our pyramidal renderer at a 6% 

error threshold.  

Figure 5 shows the performance of our pyramidal 

renderer, compared to a naive single sample per pixel 

renderer, both on an NVIDIA GeForce 650M.  

Unlike the smooth curves of the aurora, which slowly 

degrade with increasing error threshold, richly 

textured fractal surfaces reconstruct nearly 

independent of the refinement error threshold.  This 

is because there is so much detail near the set that 

any reasonable error threshold will take further 

samples there; and there is so little detail in smooth 

regions even a zero error threshold—sample unless 

binary identical—will still not refine them.  The 

resulting image only begins to noticeably degrade at 

an enormous 12% average neighborhood error 

refinement threshold.   

Pyramidal rendering provides a huge fourfold 

performance improvement early on, while zooming 

past large flat regions of Mandelbrot set points.  

These points all require the maximum number of 

iterations, so each sample is slow to compute, but the 

colors are identical, so adaptive interpolation saves 

an enormous amount of work.  Approaching the 

detailed area near the set boundary, nearly the entire 

image is full of detail, and adaptivity provides 

negligible speedup, and even a slight slowdown for a 

zero error threshold. After entering the spiral, only 

the smooth regions between the spiral arms can be 

interpolated.  Figure 4 shows the area of these 

smooth regions exceeds 50%, but the iteration trip 

count is lower in the smooth areas, so the speedup 

from interpolating through these smooth regions 

averages only 30%.  As the zoom factor increases, 

the average non-set iteration trip count increases, so 

adaptive pyramidal rendering provides increasing 

speedup. 

 

Figure 5: Framerate for pyramidal fractal renderer 

using different error thresholds, compared to naive 

renderer. 

 

Still Image Reconstruction 

The accuracy of our rendering time compression 

technique depends strongly on the scene being 

rendered—a flat blue sky could be reconstructed 

perfectly using a single sample per frame, while a 

high contrast unpredictable black and white pattern 

such as a QR code will require dense sampling.  Thus 

while the renderers described above work well, it 

would be useful to evaluate this technique for more 

realistic general scenes. 

For an unbiased benchmark set of comparison 

scenes, we have chosen to reconstruct the raytraced 

images from the final two years (2005 and 2006) of 

the Internet Ray Tracing Competition [irtc06].  Since 

this was a still image competition, we can assume 

scenes were designed and judged purely for 

aesthetics, not for renderer performance. We 

included all the winning and honorable mention 

images submitted at a resolution over 720 pixels in 

portrait or landscape aspect ratio, a total of 32 

images, and includes the natural, artificial, and 

artistic scenes shown in Figure 6.   

Because the original 3D raytraced scenes are largely 

unavailable, to test our reconstruction algorithm, 

when taking a sample instead of tracing a ray as we 

would for an interactive application, we look up the 

location in the raytraced image.  Since textures and 

lighting effects are combined, this represents a worst 

case for a time compression renderer.  The image 



also acts as the reference, so we can measure the 

accuracy of our reconstructions.  This is clearly not 

an efficient way to copy a texture, but it allows us to 

experimentally test different error metrics and 

stencils, and measure reconstruction accuracy for a 

variety of scenes.  

Figure 6 shows each scene sorted by reconstruction 

accuracy at a sampling rate of ⅓ sample per pixel.  

Highly textured and outdoor scenes are near the top, 

as they are difficult to reconstruct accurately at this 

rate, but the average color error per scene for these 

images is still under 5.5%.  Smooth or abstract scenes 

near the bottom reconstruct very easily; the average 

color error of the bottom two rows is 1%. 

 

Figure 6: Reconstructed benchmark images from the 

Internet Ray Tracing Competition, sorted top-to-

bottom in raster order by increasing reconstruction 

accuracy, at a sample rate of ⅓ samples per pixel.   

 

Figure 7: Accuracy of images reconstructed with our 

rendering time compression algorithm, when using 

different numbers of samples per pixel.  The lines 

represent different source images.  Figure 6 shows a 

vertical transect at ⅓ samples per pixel, shown here 

by the vertical line. 

 

Figure 7 varies the number of rays sampled per pixel, 

and shows the absolute color error in the resulting 

rendering with our technique, illustrating the quality 

speed tradeoff. Reconstructed image accuracy 

increases with more samples, but only asymptotically 

approaches zero.  In particular, note that taking one 

point sample per pixel does not yield zero error for 

most images, due to the need to area sample sub-

pixel detail near sharp edges.   

Figure 8 shows a 1024x768 pixel reconstruction of a 

12 megapixel photograph using our technique. 

 

 

4. CONCLUSIONS 

We have presented a scheme called rendering time 

compression, which carefully selects regions of the 

scene that need more detail, takes raytraced samples 

there, and interpolates the remaining areas of the 

image.  The net result is to cast less than one ray per 

pixel, but still derive an accurate approximation of 

the rendered scene. 

One key difficulty in both illumination and 

antialiasing is estimating area integrals from the point 

samples of classic ray tracing.  Feature film-quality 

renderers may use thousands of rays per pixel to 

reduce per-ray noise, taking hours per frame.  An old 

technique known as cone tracing effectively thickens 

rays into cones, allowing it to evaluate at least box-

filtered integrals directly, but the difficulty has 

always been how to evaluate the cone-geometry 

integral efficiently for general scenes with occlusion.  

A technique using a mipmap-friendly voxel geometry 

approximation has recently been used to compute 

global illumination on the GPU using cone tracing 



[Cras11].  A cone tracer could allow much higher 

rendering time compression rates, by providing 

smoother estimates of broad regions, and could even 

be extended to output a brightness variance estimate 

for sample selection, or directly convolve portions of 

the scene with a spectral basis function.  

With a careful implementation, it is possible our 

technique could be extended beyond raytracers and 

other point-sample renderers.  For example, in a 

conventional rasterizer such as DirectX or OpenGL, 

for a shader-limited program our interpolation step 

could skip over predictable pixels, reducing the 

average per-fragment time enough to outweigh the 

cost to re-traverse the scene geometry at each 

pyramid level. 

Rendering time compression is a promising 

technique for accelerating a variety of rendering 

problems.  We have shown a simple and GPU-

friendly adaptive pyramidal rendering technique that 

can choose where to interpolate two out of every 

three pixels, resulting in a several-fold speedup for 

interactive renderers, while only affecting colors by a 

few percent.  But the much higher image 

compression rates achieved by existing still and 

motion image compression algorithms indicate that 

there is still more unexploited redundancy in 

rendered imagery.  It is possible that even better 

results could be achieved by more closely following 

an existing compression scheme, such as designing a 

sample selection and interpolation scheme that 

directly estimates the rendered image’s discrete 

cosine transform (DCT) frequency coefficients, for 

example by using the DCT analog of a sparse Fourier 

transform, which we look forward to exploring.  

Other promising areas for future work involve 

motion estimation to exploiting frame coherence via 

our knowledge of the motion of the scene geometry 

and camera, directly outputting compressed MPEG 

bitstreams from the renderer, and decoupling 

illumination from texturing for faster global 

illumination effects. 
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Figure 8: Reconstructing a photograph using ⅓ sample per pixel with our pyramidal technique.  The largest 

reconstruction errors are unpredictable dots in the cat’s coloring, and small cracks in the wood floor. 
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